License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CPM.2022.24
URN: urn:nbn:de:0030-drops-161516
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16151/
Go to the corresponding LIPIcs Volume Portal


Bulteau, Laurent ; Gambette, Philippe ; Seminck, Olga

Reordering a Tree According to an Order on Its Leaves

pdf-format:
LIPIcs-CPM-2022-24.pdf (1 MB)


Abstract

In this article, we study two problems consisting in reordering a tree to fit with an order on its leaves provided as input, which were earlier introduced in the context of phylogenetic tree comparison for bioinformatics, OTCM and OTDE. The first problem consists in finding an order which minimizes the number of inversions with an input order on the leaves, while the second one consists in removing the minimum number of leaves from the tree to make it consistent with the input order on the remaining leaves. We show that both problems are NP-complete when the maximum degree is not bounded, as well as a problem on tree alignment, answering two questions opened in 2010 by Henning Fernau, Michael Kaufmann and Mathias Poths. We provide a polynomial-time algorithm for OTDE in the case where the maximum degree is bounded by a constant and an FPT algorithm in a parameter lower than the number of leaves to delete. Our results have practical interest not only for bioinformatics but also for digital humanities to evaluate, for example, the consistency of the dendrogram obtained from a hierarchical clustering algorithm with a chronological ordering of its leaves. We explore the possibilities of practical use of our results both on trees obtained by clustering the literary works of French authors and on simulated data, using implementations of our algorithms in Python.

BibTeX - Entry

@InProceedings{bulteau_et_al:LIPIcs.CPM.2022.24,
  author =	{Bulteau, Laurent and Gambette, Philippe and Seminck, Olga},
  title =	{{Reordering a Tree According to an Order on Its Leaves}},
  booktitle =	{33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-234-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{223},
  editor =	{Bannai, Hideo and Holub, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16151},
  URN =		{urn:nbn:de:0030-drops-161516},
  doi =		{10.4230/LIPIcs.CPM.2022.24},
  annote =	{Keywords: tree, clustering, order, permutation, inversions, FPT algorithm, NP-hardness, tree drawing, OTCM, OTDE, TTDE}
}

Keywords: tree, clustering, order, permutation, inversions, FPT algorithm, NP-hardness, tree drawing, OTCM, OTDE, TTDE
Collection: 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)
Issue Date: 2022
Date of publication: 22.06.2022
Supplementary Material: Software (Source Code): https://github.com/oseminck/tree_order_evaluation archived at: https://archive.softwareheritage.org/swh:1:dir:84e3aae3efa08e4a2d296abdda6c34da0c6fca6b


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI