License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2022.16
URN: urn:nbn:de:0030-drops-165785
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16578/
Go to the corresponding LIPIcs Volume Portal


Goldberg, Halley ; Kabanets, Valentine ; Lu, Zhenjian ; Oliveira, Igor C.

Probabilistic Kolmogorov Complexity with Applications to Average-Case Complexity

pdf-format:
LIPIcs-CCC-2022-16.pdf (1 MB)


Abstract

Understanding the relationship between the worst-case and average-case complexities of NP and of other subclasses of PH is a long-standing problem in complexity theory. Over the last few years, much progress has been achieved in this front through the investigation of meta-complexity: the complexity of problems that refer to the complexity of the input string x (e.g., given a string x, estimate its time-bounded Kolmogorov complexity). In particular, [Shuichi Hirahara, 2021] employed techniques from meta-complexity to show that if DistNP ⊆ AvgP then UP ⊆ DTIME[2^{O(n/log n)}]. While this and related results [Shuichi Hirahara and Mikito Nanashima, 2021; Lijie Chen et al., 2022] offer exciting progress after a long gap, they do not survive in the setting of randomized computations: roughly speaking, "randomness" is the opposite of "structure", and upper bounding the amount of structure (time-bounded Kolmogorov complexity) of different objects is crucial in recent applications of meta-complexity. This limitation is significant, since randomized computations are ubiquitous in algorithm design and give rise to a more robust theory of average-case complexity [Russell Impagliazzo and Leonid A. Levin, 1990].
In this work, we develop a probabilistic theory of meta-complexity, by incorporating randomness into the notion of complexity of a string x. This is achieved through a new probabilistic variant of time-bounded Kolmogorov complexity that we call pK^t complexity. Informally, pK^t(x) measures the complexity of x when shared randomness is available to all parties involved in a computation. By porting key results from meta-complexity to the probabilistic domain of pK^t complexity and its variants, we are able to establish new connections between worst-case and average-case complexity in the important setting of probabilistic computations:
- If DistNP ⊆ AvgBPP, then UP ⊆ RTIME[2^O(n/log n)].
- If DistΣ^P_2 ⊆ AvgBPP, then AM ⊆ BPTIME[2^O(n/log n)].
- In the fine-grained setting [Lijie Chen et al., 2022], we get UTIME[2^O(√{nlog n})] ⊆ RTIME[2^O(√{nlog n})] and AMTIME[2^O(√{nlog n})] ⊆ BPTIME[2^O(√{nlog n})] from stronger average-case assumptions.
- If DistPH ⊆ AvgBPP, then PH ⊆ BPTIME[2^O(n/log n)]. Specifically, for any ? ≥ 0, if DistΣ_{?+2}^P ⊆ AvgBPP then Σ_?^{P} ⊆ BPTIME[2^O(n/log n)].
- Strengthening a result from [Shuichi Hirahara and Mikito Nanashima, 2021], we show that if DistNP ⊆ AvgBPP then polynomial size Boolean circuits can be agnostically PAC learned under any unknown ?/poly-samplable distribution in polynomial time. In some cases, our framework allows us to significantly simplify existing proofs, or to extend results to the more challenging probabilistic setting with little to no extra effort.

BibTeX - Entry

@InProceedings{goldberg_et_al:LIPIcs.CCC.2022.16,
  author =	{Goldberg, Halley and Kabanets, Valentine and Lu, Zhenjian and Oliveira, Igor C.},
  title =	{{Probabilistic Kolmogorov Complexity with Applications to Average-Case Complexity}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{16:1--16:60},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16578},
  URN =		{urn:nbn:de:0030-drops-165785},
  doi =		{10.4230/LIPIcs.CCC.2022.16},
  annote =	{Keywords: average-case complexity, Kolmogorov complexity, meta-complexity, worst-case to average-case reductions, learning}
}

Keywords: average-case complexity, Kolmogorov complexity, meta-complexity, worst-case to average-case reductions, learning
Collection: 37th Computational Complexity Conference (CCC 2022)
Issue Date: 2022
Date of publication: 11.07.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI