License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2022.25
URN: urn:nbn:de:0030-drops-172161
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/17216/
Go to the corresponding LIPIcs Volume Portal


Georgiou, Chryssis ; Nicolaou, Nicolas ; Trigeorgi, Andria

Fragmented ARES: Dynamic Storage for Large Objects

pdf-format:
LIPIcs-DISC-2022-25.pdf (2 MB)


Abstract

Data availability is one of the most important features in distributed storage systems, made possible by data replication. Nowadays data are generated rapidly and developing efficient, scalable and reliable storage systems has become one of the major challenges for high performance computing. In this work, we develop and prove correct a dynamic, robust and strongly consistent distributed shared memory suitable for handling large objects (such as files) and utilizing erasure coding. We do so by integrating an Adaptive, Reconfigurable, Atomic memory framework, called Ares, with the CoBFS framework, which relies on a block fragmentation technique to handle large objects. With the addition of Ares, we also enable the use of an erasure-coded algorithm to further split the data and to potentially improve storage efficiency at the replica servers and operation latency. Our development is complemented with an in-depth experimental evaluation on the Emulab and AWS EC2 testbeds, illustrating the benefits of our approach, as well as interesting tradeoffs.

BibTeX - Entry

@InProceedings{georgiou_et_al:LIPIcs.DISC.2022.25,
  author =	{Georgiou, Chryssis and Nicolaou, Nicolas and Trigeorgi, Andria},
  title =	{{Fragmented ARES: Dynamic Storage for Large Objects}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{25:1--25:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/17216},
  URN =		{urn:nbn:de:0030-drops-172161},
  doi =		{10.4230/LIPIcs.DISC.2022.25},
  annote =	{Keywords: Distributed storage, Large objects, Strong consistency, High access concurrency, Erasure code, Reconfiguration}
}

Keywords: Distributed storage, Large objects, Strong consistency, High access concurrency, Erasure code, Reconfiguration
Collection: 36th International Symposium on Distributed Computing (DISC 2022)
Issue Date: 2022
Date of publication: 17.10.2022
Supplementary Material: Dataset: https://github.com/atrigeorgi/fragmentedARES-data.git


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI