License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2022.27
URN: urn:nbn:de:0030-drops-173123
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/17312/
Mozes, Shay ;
Wallheimer, Nathan ;
Weimann, Oren
Improved Compression of the Okamura-Seymour Metric
Abstract
Let G = (V,E) be an undirected unweighted planar graph. Let S = {s_1,…,s_k} be the vertices of some face in G and let T ⊆ V be an arbitrary set of vertices. The Okamura-Seymour metric compression problem asks to compactly encode the S-to-T distances.
Consider a vector storing the distances from an arbitrary vertex v to all vertices S = {s_1,…,s_k} in their cyclic order. The pattern of v is obtained by taking the difference between every pair of consecutive values of this vector. In STOC'19, Li and Parter used a VC-dimension argument to show that in planar graphs, the number of distinct patterns, denoted p_#, is only O(k³). This resulted in a simple Õ(min{k⁴+|T|, k⋅|T|}) space compression of the Okamura-Seymour metric.
We give an alternative proof of the p_# = O(k³) bound that exploits planarity beyond the VC-dimension argument. Namely, our proof relies on cut-cycle duality, as well as on the fact that distances among vertices of S are bounded by k. Our method implies the following:
(1) An Õ(p_#+k+|T|) space compression of the Okamura-Seymour metric, thus improving the compression of Li and Parter to Õ(min{k³+|T|, k⋅|T|}).
(2) An optimal Õ(k+|T|) space compression of the Okamura-Seymour metric, in the case where the vertices of T induce a connected component in G.
(3) A tight bound of p_# = Θ(k²) for the family of Halin graphs, whereas the VC-dimension argument is limited to showing p_# = O(k³).
BibTeX - Entry
@InProceedings{mozes_et_al:LIPIcs.ISAAC.2022.27,
author = {Mozes, Shay and Wallheimer, Nathan and Weimann, Oren},
title = {{Improved Compression of the Okamura-Seymour Metric}},
booktitle = {33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
pages = {27:1--27:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-258-7},
ISSN = {1868-8969},
year = {2022},
volume = {248},
editor = {Bae, Sang Won and Park, Heejin},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/17312},
URN = {urn:nbn:de:0030-drops-173123},
doi = {10.4230/LIPIcs.ISAAC.2022.27},
annote = {Keywords: Shortest paths, planar graphs, metric compression, distance oracles}
}
Keywords: |
|
Shortest paths, planar graphs, metric compression, distance oracles |
Collection: |
|
33rd International Symposium on Algorithms and Computation (ISAAC 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
14.12.2022 |