License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2023.13
URN: urn:nbn:de:0030-drops-175169
Go to the corresponding LIPIcs Volume Portal

Bauer, Ulrich ; Rathod, Abhishek ; Zehavi, Meirav

On Computing Homological Hitting Sets

LIPIcs-ITCS-2023-13.pdf (1 MB)


Cut problems form one of the most fundamental classes of problems in algorithmic graph theory. In this paper, we initiate the algorithmic study of a high-dimensional cut problem. The problem we study, namely, Homological Hitting Set (HHS), is defined as follows: Given a nontrivial r-cycle z in a simplicial complex, find a set ? of r-dimensional simplices of minimum cardinality so that ? meets every cycle homologous to z. Our first result is that HHS admits a polynomial-time solution on triangulations of closed surfaces. Interestingly, the minimal solution is given in terms of the cocycles of the surface. Next, we provide an example of a 2-complex for which the (unique) minimal hitting set is not a cocycle. Furthermore, for general complexes, we show that HHS is W[1]-hard with respect to the solution size p. In contrast, on the positive side, we show that HHS admits an FPT algorithm with respect to p+Δ, where Δ is the maximum degree of the Hasse graph of the complex ?.

BibTeX - Entry

  author =	{Bauer, Ulrich and Rathod, Abhishek and Zehavi, Meirav},
  title =	{{On Computing Homological Hitting Sets}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{13:1--13:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-175169},
  doi =		{10.4230/LIPIcs.ITCS.2023.13},
  annote =	{Keywords: Algorithmic topology, Cut problems, Surfaces, Parameterized complexity}

Keywords: Algorithmic topology, Cut problems, Surfaces, Parameterized complexity
Collection: 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)
Issue Date: 2023
Date of publication: 01.02.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI