License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2023.68
URN: urn:nbn:de:0030-drops-175717
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17571/
He, William ;
Rossman, Benjamin
Symmetric Formulas for Products of Permutations
Abstract
We study the formula complexity of the word problem Word_{S_n,k} : {0,1}^{kn²} → {0,1}: given n-by-n permutation matrices M₁,… ,M_k, compute the (1,1)-entry of the matrix product M₁⋯ M_k. An important feature of this function is that it is invariant under action of S_n^{k-1} given by (π₁,… ,π_{k-1})(M₁,… ,M_k) = (M₁π₁^{-1},π₁M₂π₂^{-1},… ,π_{k-2}M_{k-1}π_{k-1}^{-1},π_{k-1}M_k).
This symmetry is also exhibited in the smallest known unbounded fan-in {and,or,not}-formulas for Word_{S_n,k}, which have size n^O(log k).
In this paper we prove a matching n^{Ω(log k)} lower bound for S_n^{k-1}-invariant formulas computing Word_{S_n,k}. This result is motivated by the fact that a similar lower bound for unrestricted (non-invariant) formulas would separate complexity classes NC¹ and Logspace.
Our more general main theorem gives a nearly tight n^d(k^{1/d}-1) lower bound on the G^{k-1}-invariant depth-d {maj,and,or,not}-formula size of Word_{G,k} for any finite simple group G whose minimum permutation representation has degree n. We also give nearly tight lower bounds on the G^{k-1}-invariant depth-d {and,or,not}-formula size in the case where G is an abelian group.
BibTeX - Entry
@InProceedings{he_et_al:LIPIcs.ITCS.2023.68,
author = {He, William and Rossman, Benjamin},
title = {{Symmetric Formulas for Products of Permutations}},
booktitle = {14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
pages = {68:1--68:23},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-263-1},
ISSN = {1868-8969},
year = {2023},
volume = {251},
editor = {Tauman Kalai, Yael},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2023/17571},
URN = {urn:nbn:de:0030-drops-175717},
doi = {10.4230/LIPIcs.ITCS.2023.68},
annote = {Keywords: circuit complexity, group-invariant formulas}
}
Keywords: |
|
circuit complexity, group-invariant formulas |
Collection: |
|
14th Innovations in Theoretical Computer Science Conference (ITCS 2023) |
Issue Date: |
|
2023 |
Date of publication: |
|
01.02.2023 |