License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2023.17
URN: urn:nbn:de:0030-drops-176690
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17669/
Go to the corresponding LIPIcs Volume Portal


Cairo, Massimo ; Khan, Shahbaz ; Rizzi, Romeo ; Schmidt, Sebastian ; Tomescu, Alexandru I. ; Zirondelli, Elia C.

Cut Paths and Their Remainder Structure, with Applications

pdf-format:
LIPIcs-STACS-2023-17.pdf (0.9 MB)


Abstract

In a strongly connected graph G = (V,E), a cut arc (also called strong bridge) is an arc e ∈ E whose removal makes the graph no longer strongly connected. Equivalently, there exist u,v ∈ V, such that all u-v walks contain e. Cut arcs are a fundamental graph-theoretic notion, with countless applications, especially in reachability problems.
In this paper we initiate the study of cut paths, as a generalisation of cut arcs, which we naturally define as those paths P for which there exist u,v ∈ V, such that all u-v walks contain P as subwalk. We first prove various properties of cut paths and define their remainder structures, which we use to present a simple O(m)-time verification algorithm for a cut path (|V| = n, |E| = m).
Secondly, we apply cut paths and their remainder structures to improve several reachability problems from bioinformatics, as follows. A walk is called safe if it is a subwalk of every node-covering closed walk of a strongly connected graph. Multi-safety is defined analogously, by considering node-covering sets of closed walks instead. We show that cut paths provide simple O(m)-time algorithms verifying if a walk is safe or multi-safe. For multi-safety, we present the first linear time algorithm, while for safety, we present a simple algorithm where the state-of-the-art employed complex data structures. Finally we show that the simultaneous computation of remainder structures of all subwalks of a cut path can be performed in linear time, since they are related in a structured way. These properties yield an O(mn)-time algorithm outputting all maximal multi-safe walks, improving over the state-of-the-art algorithm running in time O(m²+n³).
The results of this paper only scratch the surface in the study of cut paths, and we believe a rich structure of a graph can be revealed, considering the perspective of a path, instead of just an arc.

BibTeX - Entry

@InProceedings{cairo_et_al:LIPIcs.STACS.2023.17,
  author =	{Cairo, Massimo and Khan, Shahbaz and Rizzi, Romeo and Schmidt, Sebastian and Tomescu, Alexandru I. and Zirondelli, Elia C.},
  title =	{{Cut Paths and Their Remainder Structure, with Applications}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{17:1--17:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17669},
  URN =		{urn:nbn:de:0030-drops-176690},
  doi =		{10.4230/LIPIcs.STACS.2023.17},
  annote =	{Keywords: reachability, cut arc, strong bridge, covering walk, safety, persistence, essentiality, genome assembly}
}

Keywords: reachability, cut arc, strong bridge, covering walk, safety, persistence, essentiality, genome assembly
Collection: 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)
Issue Date: 2023
Date of publication: 03.03.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI