License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2023.23
URN: urn:nbn:de:0030-drops-176759
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17675/
Go to the corresponding LIPIcs Volume Portal


Chrobak, Marek ; Haney, Samuel ; Liaee, Mehraneh ; Panigrahi, Debmalya ; Rajaraman, Rajmohan ; Sundaram, Ravi ; Young, Neal E.

Online Paging with Heterogeneous Cache Slots

pdf-format:
LIPIcs-STACS-2023-23.pdf (2 MB)


Abstract

It is natural to generalize the online k-Server problem by allowing each request to specify not only a point p, but also a subset S of servers that may serve it. To initiate a systematic study of this generalization, we focus on uniform and star metrics. For uniform metrics, the problem is equivalent to a generalization of Paging in which each request specifies not only a page p, but also a subset S of cache slots, and is satisfied by having a copy of p in some slot in S. We call this problem Slot-Heterogenous Paging.
In realistic settings only certain subsets of cache slots or servers would appear in requests. Therefore we parameterize the problem by specifying a family ? ⊆ 2^[k] of requestable slot sets, and we establish bounds on the competitive ratio as a function of the cache size k and family ?. If all request sets are allowed (? = 2^[k]), the optimal deterministic and randomized competitive ratios are exponentially worse than for standard Paging (? = {[k]}). As a function of |?| and k, the optimal deterministic ratio is polynomial: at most O(k²|?|) and at least Ω(√{|?|}). For any laminar family {?} of height h, the optimal ratios are O(hk) (deterministic) and O(h²log k) (randomized). The special case that we call All-or-One Paging extends standard Paging by allowing each request to specify a specific slot to put the requested page in. For All-or-One Paging the optimal competitive ratios are Θ(k) (deterministic) and Θ(log k) (randomized), while the offline problem is NP-hard. We extend the deterministic upper bound to the weighted variant of All-or-One Paging (a generalization of standard Weighted Paging), showing that it is also Θ(k).
Some results for the laminar case are shown via a reduction to the generalization of Paging in which each request specifies a set P of pages, and is satisfied by fetching any page from P into the cache. The optimal ratios for the latter problem (with laminar family of height h) are at most hk (deterministic) and hH_k (randomized).

BibTeX - Entry

@InProceedings{chrobak_et_al:LIPIcs.STACS.2023.23,
  author =	{Chrobak, Marek and Haney, Samuel and Liaee, Mehraneh and Panigrahi, Debmalya and Rajaraman, Rajmohan and Sundaram, Ravi and Young, Neal E.},
  title =	{{Online Paging with Heterogeneous Cache Slots}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{23:1--23:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17675},
  URN =		{urn:nbn:de:0030-drops-176759},
  doi =		{10.4230/LIPIcs.STACS.2023.23},
  annote =	{Keywords: Caching and paging algorithms, k-server, weighted paging, laminar family}
}

Keywords: Caching and paging algorithms, k-server, weighted paging, laminar family
Collection: 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)
Issue Date: 2023
Date of publication: 03.03.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI