License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2023.44
URN: urn:nbn:de:0030-drops-176965
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17696/
Go to the corresponding LIPIcs Volume Portal


Li, Haohong ; Xia, Ge

An ?(3.82^k) Time FPT Algorithm for Convex Flip Distance

pdf-format:
LIPIcs-STACS-2023-44.pdf (0.7 MB)


Abstract

Let P be a convex polygon in the plane, and let T be a triangulation of P. An edge e in T is called a diagonal if it is shared by two triangles in T. A flip of a diagonal e is the operation of removing e and adding the opposite diagonal of the resulting quadrilateral to obtain a new triangulation of P from T. The flip distance between two triangulations of P is the minimum number of flips needed to transform one triangulation into the other. The Convex Flip Distance problem asks if the flip distance between two given triangulations of P is at most k, for some given parameter k ∈ ℕ.
We present an FPT algorithm for the Convex Flip Distance problem that runs in time ?(3.82^k) and uses polynomial space, where k is the number of flips. This algorithm significantly improves the previous best FPT algorithms for the problem.

BibTeX - Entry

@InProceedings{li_et_al:LIPIcs.STACS.2023.44,
  author =	{Li, Haohong and Xia, Ge},
  title =	{{An ?(3.82^k) Time FPT Algorithm for Convex Flip Distance}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{44:1--44:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17696},
  URN =		{urn:nbn:de:0030-drops-176965},
  doi =		{10.4230/LIPIcs.STACS.2023.44},
  annote =	{Keywords: Flip distance, Rotation distance, Triangulations, Exact algorithms, Parameterized complexity}
}

Keywords: Flip distance, Rotation distance, Triangulations, Exact algorithms, Parameterized complexity
Collection: 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)
Issue Date: 2023
Date of publication: 03.03.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI