License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FORC.2023.9
URN: urn:nbn:de:0030-drops-179307
Go to the corresponding LIPIcs Volume Portal

Casel, Katrin ; Friedrich, Tobias ; Schirneck, Martin ; Wietheger, Simon

Fair Correlation Clustering in Forests

LIPIcs-FORC-2023-9.pdf (0.8 MB)


The study of algorithmic fairness received growing attention recently. This stems from the awareness that bias in the input data for machine learning systems may result in discriminatory outputs. For clustering tasks, one of the most central notions of fairness is the formalization by Chierichetti, Kumar, Lattanzi, and Vassilvitskii [NeurIPS 2017]. A clustering is said to be fair, if each cluster has the same distribution of manifestations of a sensitive attribute as the whole input set. This is motivated by various applications where the objects to be clustered have sensitive attributes that should not be over- or underrepresented. Most research on this version of fair clustering has focused on centriod-based objectives.
In contrast, we discuss the applicability of this fairness notion to Correlation Clustering. The existing literature on the resulting Fair Correlation Clustering problem either presents approximation algorithms with poor approximation guarantees or severely limits the possible distributions of the sensitive attribute (often only two manifestations with a 1:1 ratio are considered). Our goal is to understand if there is hope for better results in between these two extremes. To this end, we consider restricted graph classes which allow us to characterize the distributions of sensitive attributes for which this form of fairness is tractable from a complexity point of view.
While existing work on Fair Correlation Clustering gives approximation algorithms, we focus on exact solutions and investigate whether there are efficiently solvable instances. The unfair version of Correlation Clustering is trivial on forests, but adding fairness creates a surprisingly rich picture of complexities. We give an overview of the distributions and types of forests where Fair Correlation Clustering turns from tractable to intractable.
As the most surprising insight, we consider the fact that the cause of the hardness of Fair Correlation Clustering is not the strictness of the fairness condition. We lift most of our results to also hold for the relaxed version of the fairness condition. Instead, the source of hardness seems to be the distribution of the sensitive attribute. On the positive side, we identify some reasonable distributions that are indeed tractable. While this tractability is only shown for forests, it may open an avenue to design reasonable approximations for larger graph classes.

BibTeX - Entry

  author =	{Casel, Katrin and Friedrich, Tobias and Schirneck, Martin and Wietheger, Simon},
  title =	{{Fair Correlation Clustering in Forests}},
  booktitle =	{4th Symposium on Foundations of Responsible Computing (FORC 2023)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-272-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{256},
  editor =	{Talwar, Kunal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-179307},
  doi =		{10.4230/LIPIcs.FORC.2023.9},
  annote =	{Keywords: correlation clustering, disparate impact, fair clustering, relaxed fairness}

Keywords: correlation clustering, disparate impact, fair clustering, relaxed fairness
Collection: 4th Symposium on Foundations of Responsible Computing (FORC 2023)
Issue Date: 2023
Date of publication: 04.06.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI