License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SAT.2023.13
URN: urn:nbn:de:0030-drops-184752
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18475/
Go to the corresponding LIPIcs Volume Portal


Kirchweger, Markus ; Peitl, Tomáš ; Szeider, Stefan

A SAT Solver’s Opinion on the Erdős-Faber-Lovász Conjecture

pdf-format:
LIPIcs-SAT-2023-13.pdf (0.8 MB)


Abstract

In 1972, Paul Erdős, Vance Faber, and Lászlo Lovász asked whether every linear hypergraph with n vertices can be edge-colored with n colors, a statement that has come to be known as the EFL conjecture. Erdős himself considered the conjecture as one of his three favorite open problems, and offered increasing money prizes for its solution on several occasions. A proof of the conjecture was recently announced, for all but a finite number of hypergraphs. In this paper we look at some of the cases not covered by this proof.
We use SAT solvers, and in particular the SAT Modulo Symmetries (SMS) framework, to generate non-colorable linear hypergraphs with a fixed number of vertices and hyperedges modulo isomorphisms. Since hypergraph colorability is NP-hard, we cannot directly express in a propositional formula that we want only non-colorable hypergraphs. Instead, we use one SAT (SMS) solver to generate candidate hypergraphs modulo isomorphisms, and another to reject them by finding a coloring. Each successive candidate is required to defeat all previous colorings, whereby we avoid having to generate and test all linear hypergraphs.
Computational methods have previously been used to verify the EFL conjecture for small hypergraphs. We verify and extend these results to larger values and discuss challenges and directions. Ours is the first computational approach to the EFL conjecture that allows producing independently verifiable, DRAT proofs.

BibTeX - Entry

@InProceedings{kirchweger_et_al:LIPIcs.SAT.2023.13,
  author =	{Kirchweger, Markus and Peitl, Tom\'{a}\v{s} and Szeider, Stefan},
  title =	{{A SAT Solver’s Opinion on the Erd\H{o}s-Faber-Lov\'{a}sz Conjecture}},
  booktitle =	{26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-286-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{271},
  editor =	{Mahajan, Meena and Slivovsky, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18475},
  URN =		{urn:nbn:de:0030-drops-184752},
  doi =		{10.4230/LIPIcs.SAT.2023.13},
  annote =	{Keywords: hypergraphs, graph coloring, SAT modulo symmetries}
}

Keywords: hypergraphs, graph coloring, SAT modulo symmetries
Collection: 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)
Issue Date: 2023
Date of publication: 09.08.2023
Supplementary Material: Software (Source Code): https://github.com/markirch/sat-modulo-symmetries/ archived at: https://archive.softwareheritage.org/swh:1:dir:c50f1ce7d22717e113b915ae9976da0cb0e67c1d
Software (Documentation): https://sat-modulo-symmetries.readthedocs.io/


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI