License: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license (CC BY-NC-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2012.477
URN: urn:nbn:de:0030-drops-34385
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2012/3438/
Go to the corresponding LIPIcs Volume Portal


Sun, Xiaoming ; Wang, Chengu

Randomized Communication Complexity for Linear Algebra Problems over Finite Fields

pdf-format:
54.pdf (0.6 MB)


Abstract

Finding the singularity of a matrix is a basic problem in linear algebra. Chu and Schnitger [SC95] first considered this problem in the communication complexity model, in which Alice holds the first half of the matrix and Bob holds the other half. They proved that the deterministic communication complexity is Omega(n^2 log p) for an n by n matrix over the finite field F_p. Then, Clarkson and Woodruff [CW09] introduced the singularity problem to the streaming model. They proposed a randomized one pass streaming algorithm that uses O(k^2 log n) space to decide if the rank of a matrix is k, and proved an Omega(k^2) lower bound for randomized one-way protocols in the communication complexity model.

We prove that the randomized/quantum communication complexity of the singularity problem over F_p is Omega(n^2 log p), which implies the same space lower bound for randomized streaming algorithms, even for a constant number of passes. The proof uses the framework by Lee and Shraibman [LS09], but we choose Fourier coefficients as the witness for the dual approximate norm of the communication matrix. Moreover, we use Fourier analysis to show the same randomized/quantum lower bound when deciding if the determinant of a non-singular matrix is a or b for non-zero a and b.

BibTeX - Entry

@InProceedings{sun_et_al:LIPIcs:2012:3438,
  author =	{Xiaoming Sun and Chengu Wang},
  title =	{{Randomized Communication Complexity for Linear Algebra Problems over Finite Fields}},
  booktitle =	{29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
  pages =	{477--488},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-35-4},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{14},
  editor =	{Christoph D{\"u}rr and Thomas Wilke},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2012/3438},
  URN =		{urn:nbn:de:0030-drops-34385},
  doi =		{10.4230/LIPIcs.STACS.2012.477},
  annote =	{Keywords: communication complexity, streaming, matrix, singularity, determinant}
}

Keywords: communication complexity, streaming, matrix, singularity, determinant
Collection: 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)
Issue Date: 2012
Date of publication: 24.02.2012


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI