License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2014.643
URN: urn:nbn:de:0030-drops-47289
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2014/4728/
Dubey, Chandan ;
Holenstein, Thomas
Sampling a Uniform Solution of a Quadratic Equation Modulo a Prime Power
Abstract
Let p be a prime and k, t be positive integers. Given a quadratic equation Q(x1,x2,...,xn)=t mod p^k in n-variables; we present a polynomial time Las-Vegas algorithm that samples a uniformly random solution of the quadratic equation.
BibTeX - Entry
@InProceedings{dubey_et_al:LIPIcs:2014:4728,
author = {Chandan Dubey and Thomas Holenstein},
title = {{Sampling a Uniform Solution of a Quadratic Equation Modulo a Prime Power}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
pages = {643--653},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-74-3},
ISSN = {1868-8969},
year = {2014},
volume = {28},
editor = {Klaus Jansen and Jos{\'e} D. P. Rolim and Nikhil R. Devanur and Cristopher Moore},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2014/4728},
URN = {urn:nbn:de:0030-drops-47289},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2014.643},
annote = {Keywords: Quadratic Forms, Lattices, Modular, p-adic}
}
Keywords: |
|
Quadratic Forms, Lattices, Modular, p-adic |
Collection: |
|
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014) |
Issue Date: |
|
2014 |
Date of publication: |
|
04.09.2014 |