License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.TQC.2014.76
URN: urn:nbn:de:0030-drops-48084
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2014/4808/
Go to the corresponding LIPIcs Volume Portal


Chailloux, André ; Kerenidis, Iordanis ; Kundu, Srijita ; Sikora, Jamie

Optimal Bounds for Parity-Oblivious Random Access Codes with Applications

pdf-format:
8.pdf (0.4 MB)


Abstract

Random Access Codes is an information task that has been extensively studied and found many applications in quantum information. In this scenario, Alice receives an n-bit string x, and wishes to encode x into a quantum state rho_x, such that Bob, when receiving the state rho_x, can choose any bit i in [n] and recover the input bit x_i with high probability. Here we study a variant called parity-oblivious random acres codes, where we impose the cryptographic property that Bob cannot infer any information about the parity of any subset of bits of the input, apart form the single bits x_i.

We provide the optimal quantum parity-oblivious random access codes and show that they are asymptotically better than the optimal classical ones. For this, we relate such encodings to a non-local game and provide tight bounds for the success probability of the non-local game via semi-definite programming. Our results provide a large non-contextuality inequality violation and resolve the main open question in [Spekkens et al., Phys. Review Letters, 2009].

BibTeX - Entry

@InProceedings{chailloux_et_al:LIPIcs:2014:4808,
  author =	{Andr{\'e} Chailloux and Iordanis Kerenidis and Srijita Kundu and Jamie Sikora},
  title =	{{Optimal Bounds for Parity-Oblivious Random Access Codes with Applications}},
  booktitle =	{9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014)},
  pages =	{76--87},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-73-6},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{27},
  editor =	{Steven T. Flammia and Aram W. Harrow},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2014/4808},
  URN =		{urn:nbn:de:0030-drops-48084},
  doi =		{10.4230/LIPIcs.TQC.2014.76},
  annote =	{Keywords: quantum information theory, contextuality, semidefinite programming}
}

Keywords: quantum information theory, contextuality, semidefinite programming
Collection: 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014)
Issue Date: 2014
Date of publication: 11.12.2014


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI