License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.TQC.2014.88
URN: urn:nbn:de:0030-drops-48094
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2014/4809/
Mosonyi, Milán
Convexity Properties of the Quantum Rényi Divergences, with Applications to the Quantum Stein's Lemma
Abstract
We show finite-size bounds on the deviation of the optimal type II error from its asymptotic value in the quantum hypothesis testing problem of Stein's lemma with composite null-hypothesis.
The proof is based on some simple properties of a new notion of quantum Rènyi divergence, recently introduced in [Müller-Lennert, Dupuis, Szehr, Fehr and Tomamichel, J. Math. Phys. 54, 122203, (2013)], and [Wilde, Winter, Yang, arXiv:1306.1586].
BibTeX - Entry
@InProceedings{mosonyi:LIPIcs:2014:4809,
author = {Mil{\'a}n Mosonyi},
title = {{Convexity Properties of the Quantum R{\'e}nyi Divergences, with Applications to the Quantum Stein's Lemma }},
booktitle = {9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014)},
pages = {88--98},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-73-6},
ISSN = {1868-8969},
year = {2014},
volume = {27},
editor = {Steven T. Flammia and Aram W. Harrow},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2014/4809},
URN = {urn:nbn:de:0030-drops-48094},
doi = {10.4230/LIPIcs.TQC.2014.88},
annote = {Keywords: Quantum R{\'e}nyi divergences, Stein's lemma, composite null-hypothesis, second-order asymptotics}
}
Keywords: |
|
Quantum Rényi divergences, Stein's lemma, composite null-hypothesis, second-order asymptotics |
Collection: |
|
9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014) |
Issue Date: |
|
2014 |
Date of publication: |
|
11.12.2014 |