License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CSL.2017.18
URN: urn:nbn:de:0030-drops-76830
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2017/7683/
Go to the corresponding LIPIcs Volume Portal


Chatterjee, Krishnendu ; Dvorák, Wolfgang ; Henzinger, Monika ; Loitzenbauer, Veronika

Improved Set-Based Symbolic Algorithms for Parity Games

pdf-format:
LIPIcs-CSL-2017-18.pdf (0.7 MB)


Abstract

Graph games with omega-regular winning conditions provide a mathematical framework to analyze a wide range of problems in the analysis of reactive systems and programs (such as the synthesis of reactive systems, program repair, and the verification of branching time properties). Parity conditions are canonical forms to specify omega-regular winning conditions. Graph games with parity conditions are equivalent to mu-calculus model checking, and thus a very important algorithmic problem. Symbolic algorithms are of great significance because they provide scalable algorithms for the analysis of large finite-state systems, as well as algorithms for the analysis of infinite-state systems with finite quotient. A set-based symbolic algorithm uses the basic set operations and the one-step predecessor operators.
We consider graph games with n vertices and parity conditions with c priorities (equivalently, a mu-calculus formula with c alternations of least and greatest fixed points). While many explicit algorithms exist for graph games with parity conditions, for set-based symbolic algorithms there are only two algorithms (notice that we use space to refer to the number of sets stored by a symbolic algorithm): (a) the basic algorithm that requires O(n^c) symbolic operations and linear space; and (b) an improved algorithm that requires O(n^{c/2+1}) symbolic operations but also O(n^{c/2+1}) space (i.e., exponential space).
In this work we present two set-based symbolic algorithms for parity games: (a) our first algorithm requires O(n^{c/2+1}) symbolic operations and only requires linear space; and (b) developing on our first algorithm, we present an algorithm that requires O(n^{c/3+1}) symbolic operations and only linear space. We also present the first linear space set-based symbolic algorithm for parity games that requires at most a sub-exponential number of symbolic operations.

BibTeX - Entry

@InProceedings{chatterjee_et_al:LIPIcs:2017:7683,
  author =	{Krishnendu Chatterjee and Wolfgang Dvor{\'a}k and Monika Henzinger and Veronika Loitzenbauer},
  title =	{{Improved Set-Based Symbolic Algorithms for Parity Games}},
  booktitle =	{26th EACSL Annual Conference on Computer Science Logic (CSL 2017)},
  pages =	{18:1--18:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-045-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{82},
  editor =	{Valentin Goranko and Mads Dam},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7683},
  URN =		{urn:nbn:de:0030-drops-76830},
  doi =		{10.4230/LIPIcs.CSL.2017.18},
  annote =	{Keywords: model checking, graph games, parity games, symbolic computation, progress measure}
}

Keywords: model checking, graph games, parity games, symbolic computation, progress measure
Collection: 26th EACSL Annual Conference on Computer Science Logic (CSL 2017)
Issue Date: 2017
Date of publication: 16.08.2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI