License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2018.38
URN: urn:nbn:de:0030-drops-96201
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/9620/
Aldi, Marco ;
de Beaudrap, Niel ;
Gharibian, Sevag ;
Saeedi, Seyran
On Efficiently Solvable Cases of Quantum k-SAT
Abstract
The constraint satisfaction problems k-SAT and Quantum k-SAT (k-QSAT) are canonical NP-complete and QMA_1-complete problems (for k >= 3), respectively, where QMA_1 is a quantum generalization of NP with one-sided error. Whereas k-SAT has been well-studied for special tractable cases, as well as from a parameterized complexity perspective, much less is known in similar settings for k-QSAT. Here, we study the open problem of computing satisfying assignments to k-QSAT instances which have a "matching" or "dimer covering"; this is an NP problem whose decision variant is trivial, but whose search complexity remains open.
Our results fall into three directions, all of which relate to the "matching" setting: (1) We give a polynomial-time classical algorithm for k-QSAT when all qubits occur in at most two clauses. (2) We give a parameterized algorithm for k-QSAT instances from a certain non-trivial class, which allows us to obtain exponential speedups over brute force methods in some cases by reducing the problem to solving for a single root of a single univariate polynomial. (3) We conduct a structural graph theoretic study of 3-QSAT interaction graphs which have a "matching". We remark that the results of (2), in particular, introduce a number of new tools to the study of Quantum SAT, including graph theoretic concepts such as transfer filtrations and blow-ups from algebraic geometry; we hope these prove useful elsewhere.
BibTeX - Entry
@InProceedings{aldi_et_al:LIPIcs:2018:9620,
author = {Marco Aldi and Niel de Beaudrap and Sevag Gharibian and Seyran Saeedi},
title = {{On Efficiently Solvable Cases of Quantum k-SAT}},
booktitle = {43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
pages = {38:1--38:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-086-6},
ISSN = {1868-8969},
year = {2018},
volume = {117},
editor = {Igor Potapov and Paul Spirakis and James Worrell},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2018/9620},
URN = {urn:nbn:de:0030-drops-96201},
doi = {10.4230/LIPIcs.MFCS.2018.38},
annote = {Keywords: search complexity, local Hamiltonian, Quantum SAT, algebraic geometry}
}
Keywords: |
|
search complexity, local Hamiltonian, Quantum SAT, algebraic geometry |
Collection: |
|
43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018) |
Issue Date: |
|
2018 |
Date of publication: |
|
27.08.2018 |