License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CSL.2018.32
URN: urn:nbn:de:0030-drops-96996
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/9699/
Go to the corresponding LIPIcs Volume Portal


Marsden, Dan ; Zwart, Maaike

Quantitative Foundations for Resource Theories

pdf-format:
LIPIcs-CSL-2018-32.pdf (0.4 MB)


Abstract

Considering resource usage is a powerful insight in the analysis of many phenomena in the sciences. Much of the current research on these resource theories focuses on the analysis of specific resources such quantum entanglement, purity, randomness or asymmetry. However, the mathematical foundations of resource theories are at a much earlier stage, and there has been no satisfactory account of quantitative aspects such as costs, rates or probabilities.
We present a categorical foundation for quantitative resource theories, derived from enriched category theory. Our approach is compositional, with rich algebraic structure facilitating calculations. The resulting theory is parameterized, both in the quantities under consideration, for example costs or probabilities, and in the structural features of the resources such as whether they can be freely copied or deleted. We also achieve a clear separation of concerns between the resource conversions that are freely available, and the costly resources that are typically the object of study. By using an abstract categorical approach, our framework is naturally open to extension. We provide many examples throughout, emphasising the resource theoretic intuitions for each of the mathematical objects under consideration.

BibTeX - Entry

@InProceedings{marsden_et_al:LIPIcs:2018:9699,
  author =	{Dan Marsden and Maaike Zwart},
  title =	{{Quantitative Foundations for Resource Theories}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic  (CSL 2018)},
  pages =	{32:1--32:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Dan Ghica and Achim Jung},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/9699},
  URN =		{urn:nbn:de:0030-drops-96996},
  doi =		{10.4230/LIPIcs.CSL.2018.32},
  annote =	{Keywords: Resource Theory, Enriched Category, Profunctor, Monad, Combinatorial Species, Multicategory, Operad, Bimodule}
}

Keywords: Resource Theory, Enriched Category, Profunctor, Monad, Combinatorial Species, Multicategory, Operad, Bimodule
Collection: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)
Issue Date: 2018
Date of publication: 29.08.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI