License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.12
URN: urn:nbn:de:0030-drops-112270
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11227/
Go to the corresponding LIPIcs Volume Portal


Rohatgi, Dhruv

Conditional Hardness of Earth Mover Distance

pdf-format:
LIPIcs-APPROX-RANDOM-2019-12.pdf (0.5 MB)


Abstract

The Earth Mover Distance (EMD) between two sets of points A, B subseteq R^d with |A| = |B| is the minimum total Euclidean distance of any perfect matching between A and B. One of its generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching of size |A| between sets of points A,B subseteq R^d with |A| <= |B|. The problems of computing EMD and asymmetric EMD are well-studied and have many applications in computer science, some of which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time complexity in n are known (even for finding approximately optimal matchings), but suffer from exponential dependence on the dimension.
In this paper we show that significant improvements in exact and approximate algorithms for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the following results:
- Under the Orthogonal Vectors Conjecture, there is some c>0 such that EMD in Omega(c^{log^* n}) dimensions cannot be computed in truly subquadratic time.
- Under the Hitting Set Conjecture, for every delta>0, no truly subquadratic time algorithm can find a (1 + 1/n^delta)-approximate EMD matching in omega(log n) dimensions.
- Under the Hitting Set Conjecture, for every eta = 1/omega(log n), no truly subquadratic time algorithm can find a (1 + eta)-approximate asymmetric EMD matching in omega(log n) dimensions.

BibTeX - Entry

@InProceedings{rohatgi:LIPIcs:2019:11227,
  author =	{Dhruv Rohatgi},
  title =	{{Conditional Hardness of Earth Mover Distance}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/11227},
  URN =		{urn:nbn:de:0030-drops-112270},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.12},
  annote =	{Keywords: Earth Mover Distance, Hardness of Approximation, Fine-Grained Complexity}
}

Keywords: Earth Mover Distance, Hardness of Approximation, Fine-Grained Complexity
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)
Issue Date: 2019
Date of publication: 17.09.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI