Go to the corresponding LIPIcs Volume Portal |
Kerber, Michael ; Nigmetov, Arnur
pdf-format: |
|
@InProceedings{kerber_et_al:LIPIcs:2020:12211, author = {Michael Kerber and Arnur Nigmetov}, title = {{Efficient Approximation of the Matching Distance for 2-Parameter Persistence}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {53:1--53:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Sergio Cabello and Danny Z. Chen}, publisher = {Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/opus/volltexte/2020/12211}, URN = {urn:nbn:de:0030-drops-122116}, doi = {10.4230/LIPIcs.SoCG.2020.53}, annote = {Keywords: multi-parameter persistence, matching distance, approximation algorithm} }
Keywords: | multi-parameter persistence, matching distance, approximation algorithm | |
Collection: | 36th International Symposium on Computational Geometry (SoCG 2020) | |
Issue Date: | 2020 | |
Date of publication: | 08.06.2020 | |
Supplementary Material: | Our code is available as part of the Hera library https://bitbucket.org/grey_narn/hera/src/master/matching/ and provides an efficient implementation for computing the matching distance for bi-filtrations. |