License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2020.60
URN: urn:nbn:de:0030-drops-122183
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12218/
Pálvölgyi, Dömötör
Radon Numbers Grow Linearly
Abstract
Define the k-th Radon number r_k of a convexity space as the smallest number (if it exists) for which any set of r_k points can be partitioned into k parts whose convex hulls intersect. Combining the recent abstract fractional Helly theorem of Holmsen and Lee with earlier methods of Bukh, we prove that r_k grows linearly, i.e., r_k ≤ c(r₂)⋅ k.
BibTeX - Entry
@InProceedings{plvlgyi:LIPIcs:2020:12218,
author = {D{\"o}m{\"o}t{\"o}r P{\'a}lv{\"o}lgyi},
title = {{Radon Numbers Grow Linearly}},
booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)},
pages = {60:1--60:5},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-143-6},
ISSN = {1868-8969},
year = {2020},
volume = {164},
editor = {Sergio Cabello and Danny Z. Chen},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2020/12218},
URN = {urn:nbn:de:0030-drops-122183},
doi = {10.4230/LIPIcs.SoCG.2020.60},
annote = {Keywords: discrete geometry, convexity space, Radon number}
}
Keywords: |
|
discrete geometry, convexity space, Radon number |
Collection: |
|
36th International Symposium on Computational Geometry (SoCG 2020) |
Issue Date: |
|
2020 |
Date of publication: |
|
08.06.2020 |