License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2021.44
URN: urn:nbn:de:0030-drops-141135
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14113/
Go to the corresponding LIPIcs Volume Portal


Carmosino, Marco ; Hoover, Kenneth ; Impagliazzo, Russell ; Kabanets, Valentine ; Kolokolova, Antonina

Lifting for Constant-Depth Circuits and Applications to MCSP

pdf-format:
LIPIcs-ICALP-2021-44.pdf (0.9 MB)


Abstract

Lifting arguments show that the complexity of a function in one model is essentially that of a related function (often the composition of the original function with a small function called a gadget) in a more powerful model. Lifting has been used to prove strong lower bounds in communication complexity, proof complexity, circuit complexity and many other areas.
We present a lifting construction for constant depth unbounded fan-in circuits. Given a function f, we construct a function g, so that the depth d+1 circuit complexity of g, with a certain restriction on bottom fan-in, is controlled by the depth d circuit complexity of f, with the same restriction. The function g is defined as f composed with a parity function. With some quantitative losses, average-case and general depth-d circuit complexity can be reduced to circuit complexity with this bottom fan-in restriction. As a consequence, an algorithm to approximate the depth d (for any d > 3) circuit complexity of given (truth tables of) Boolean functions yields an algorithm for approximating the depth 3 circuit complexity of functions, i.e., there are quasi-polynomial time mapping reductions between various gap-versions of AC⁰-MCSP. Our lifting results rely on a blockwise switching lemma that may be of independent interest.
We also show some barriers on improving the efficiency of our reductions: such improvements would yield either surprisingly efficient algorithms for MCSP or stronger than known AC⁰ circuit lower bounds.

BibTeX - Entry

@InProceedings{carmosino_et_al:LIPIcs.ICALP.2021.44,
  author =	{Carmosino, Marco and Hoover, Kenneth and Impagliazzo, Russell and Kabanets, Valentine and Kolokolova, Antonina},
  title =	{{Lifting for Constant-Depth Circuits and Applications to MCSP}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{44:1--44:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14113},
  URN =		{urn:nbn:de:0030-drops-141135},
  doi =		{10.4230/LIPIcs.ICALP.2021.44},
  annote =	{Keywords: circuit complexity, constant-depth circuits, lifting theorems, Minimum Circuit Size Problem, reductions, Switching Lemma}
}

Keywords: circuit complexity, constant-depth circuits, lifting theorems, Minimum Circuit Size Problem, reductions, Switching Lemma
Collection: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Issue Date: 2021
Date of publication: 02.07.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI