License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2016.82
URN: urn:nbn:de:0030-drops-62032
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2016/6203/
Larsen, Kasper Green ;
Nelson, Jelani
The Johnson-Lindenstrauss Lemma Is Optimal for Linear Dimensionality Reduction
Abstract
For any n > 1, 0 < epsilon < 1/2, and N > n^C for some constant C > 0, we show the existence of an N-point subset X of l_2^n such that any linear map from X to l_2^m with distortion at most 1 + epsilon must have m = Omega(min{n, epsilon^{-2}*lg(N)). This improves a lower bound of Alon [Alon, Discre. Mathem., 1999], in the linear setting, by a lg(1/epsilon) factor. Our lower bound matches the upper bounds provided by the identity matrix and the Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss, Contem. Mathem., 1984].
BibTeX - Entry
@InProceedings{larsen_et_al:LIPIcs:2016:6203,
author = {Kasper Green Larsen and Jelani Nelson},
title = {{The Johnson-Lindenstrauss Lemma Is Optimal for Linear Dimensionality Reduction}},
booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
pages = {82:1--82:11},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-013-2},
ISSN = {1868-8969},
year = {2016},
volume = {55},
editor = {Ioannis Chatzigiannakis and Michael Mitzenmacher and Yuval Rabani and Davide Sangiorgi},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/6203},
URN = {urn:nbn:de:0030-drops-62032},
doi = {10.4230/LIPIcs.ICALP.2016.82},
annote = {Keywords: dimensionality reduction, lower bounds, Johnson-Lindenstrauss}
}
Keywords: |
|
dimensionality reduction, lower bounds, Johnson-Lindenstrauss |
Collection: |
|
43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) |
Issue Date: |
|
2016 |
Date of publication: |
|
23.08.2016 |